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A new technique for the advection of liquid domains with free
surfaces is developed. This technique is based on describing the
liquid surface by a spine function hle, i), with o being the angle
measured from one axis at time t. After discretization, the spines
hia;, t} subdivide the liquid zone into conical subvolumes. The
volume of each of the subvolumes is updated using the local veloci-
ties at the interface of every two neighboring subvolumes. A tech-
nigue is developed to calculate the new spines based on the updated
subvolumes, The method is referred to as the spine-flux method
{SFM) and it is implemented in a Galerkin finite element method
with penalty formulation. The problems of drop oscillation and drop
collision are utilized to show the accuracy and efficiency of the
technigue. ® 1995 Acadamic Press, Inc.

1. INTRODUCTION

In a previous paper [1], we introduced a new technique for
simulating free surface flows based on the combination of finite
element method for solving the governing equations and a flux
method for locating the free surface. The technique, which was
called the height-lux method (HFM), was useful when the free
surface could be defined as a function of one coordinate only
{e.g., axial coordinate in axisymmetric Rows). Later, HFM was
successfully implemented to study the capillary and thermocap-
illary breakup of liquid jets [Z]. In this paper, we present a new
technique for handling the free surface flows when the location
of the free surface can be specified as a function of an angular
coordinate. The technique is described for axisymmetric flows;
however, the case of a 2-D Cartesian flow can be treated in
the same fashion.

In the pumerical study of drop oscillations, a variety of
techniques have been utilized which are basically in common
use with other free surface flow problems. In general, finite
element and finite difference methods are implemented when a
study of viscous drop oscillations over a wide range of Reynolds
numbers is concerned, However, these methods need to be
furnished with some other complementary techniques to follow
the motion of the free surface. A commonly used technique is
the volume of fiuid (VOF) method [3-7], which performs on
an Eulerian grid by advecting the volume fraction, f, field. By
definition, f = 1 for cells full of fluid, f = O for empty cells,
and (b << f <C 1 for partially filled cells. The f-field is updated

at any time step during the computations by using the velocity
field and a surface reconstruction scheme. The VOF technigue,
which was originally developed for finite difference methods,
has recently been implemented in finite element methods by
Mashayek and Ashgriz [8]. VOF techniques are also useful in
simnutating the motion of a front when its velocity is specified.
For instance Colella et al. [9], Hendersen et al. [10), and Puckett
[11] have used the SLIC method to study shock wave refraction.
Marcus ef al, [12] and Henderson et al. [13] have implemented
the least-squares technique developed by Puckett [14] to study
the hyperbolic fiows. In this technique the error between the
volume fractions given by the true and approximate interfaces
are minimized by the least square line fit to a 3 X 3 cell unit.
Another technique which has widely been used with finite
difference method is the marker and cell (MAC) method [15-
18]. In the MAC method, hundreds of massless marker particles
are added to the fluid. These particles are then advected in
Lagrangian sense using the average Eulerian velocities in
their vicinity.

While finite difference based techniques have been com-
monly used to simulate large surface deformations including
the breakup and merging of liquids, the finite element based
techniques have been more common in simulating less compli-
cated surface deformations. The latter performs on either fixed
[19] or deforming spatial meshes. Deforming meshes are more
popular and are divided into three subcategories. One is based
on a three-stage iterative cycle by guessing the location of the
free surface, solving the governing equations, and updating the
free surface. lterations are repeated until the difference between
the two successively updated free surface locations becomes
less than some desired convergence tolerance [20]. The second
approach developed by Saito and Scriven [21] and Ettouney
and Brown [22] eliminates the iterations by introducing the
position of the nodes on the free surface as a degree of freedom.
The third technique is the height-flux method (HFM) developed
by Mashayek and Ashgriz [1]. In this technigue, neither itera-
tions are involved for locating the free surface nor one degree
of freedom is added to the set of the unknowns. The free surface
is found by using the volume of fluid inside subvolumes which
are updated at any time step using the velocity field. The current
paper presents a modified version of HFM, where the free
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surface can be represented by an angular coordinate and it is
referred to as the spine-flux method (SFM).

The mathematical formulation of the problem and the surface
reconstruction technique are described in Section 2. Drop oscilla-
tion problem is used in Section 3 to assess the accuracy and effi-
ciency of the SFM. In Section 4, problems with moving center of
mass are considered and a technique is presented for coordinate
shift that allows the simulation of arge surface deformations.

2. SPINE-FLUX METHOD

The idea of using a flux method to reconstruct the free surface
is basically driven from the volume of fluid (VOF) technique
which is widely used in conjunction with the finite difference
technique. A similar technique was also applied to finite element
method by Mashayek and Ashgriz [8]. As far as the discretiza-
tion of the domain is concerned, the technique which is de-
scribed in this paper is similar to the spine method of Kistler
and Scriven [23]. The major difference between the two tech-
niques lies in the way that free surface location is obtained. In
the spine method of Kistler and Scriven [23], the free surface
is found by solving for the kinematic boundary condition on
the free surface coupled with the continuity and momentum
equations. In our technique, the free surface is reconstructed
from the velocity field and is completely decoupled from the
governing equations. Therefore, less computational effort is
needed since the number of equations is decreased by one, and
more accuracy is achieved by ulilizing the entire velocity field
instead of the surface velocities only. More computational effi-
ciency is obtained in our technique by implementing a penalty
formulation rather than the mixed method which is implemented
in spine method. With the penalty formulation, the continuity
equation is absorbed in the momentum eqoation; therefore, the
npumber of equations is again decreased by one. The flux method
has the advantage of decoupling the free surface reconstruction
technique from the method which is implemented o solve the
flow equattons.

2.1. Mathematical Formulation

We consider the laminar axisymmetric flow of an incom-
pressible Newtonian viscous fluid with constant properties. All
lengths and velocities are normalized by characteristic scales
L and U, respectively. The governing equations, in nondimen-
sional form, are the continuity and momentum equations:
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Here, ¥ and v are velocities in the axial, z, and radial, r,
directions, respectively. Reynolds and Weber numbers are re-
spectively defined as

RC:ELE, We:.egzé’ (4)
M o

where, p, i, and o are the density, viscosity, and surface tension
of the fluid, respectively. In the study of drops which undergo
nonsymmetric oscillations, with respect to the r-axis, the origin
of the coordinate system does not necessarily coincide with the
center of mass. Therefore, the body force generated by the
acceleration of the center of mass has to be included in the
momentem equation. However, owing to the axial symmetry,
the center of mass always remains on the z-axis and the body
force due to the acceleration of the center of mass is only
included in the momentum equation in axial direction. This
term is shown by 7y in Eq. (2).
Boundary conditions are given by

{ u = F(z, r)
on 5, {5}
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where S, and §, are parts of the boundary with Dirichlet and
Neumann boundary conditions, respectively. ,, and 7., denote
z and r components of the total surface traction and r, and n,
denote direction cosines of the unit outer normal to the surface
S;. On the free surface 7, and 7, are the components of the
surface tension which are inversely proportional to the radius
of the curvature of the surface R.:

onS,, (6)
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We assume that the free surface can be represented by a spine
function, h{c, 1) with e being the angle measured from the z-
axis (Fig. 1). Therefore, the radius of curvature is given by
{Becker er al. [24]).

h — cot ah,,
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A Galerkin finite element method with penalty formulation is
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FiG. 1. An axisymmetric fluid domain represented by a spine function.
The fluid zone divided into subvolumes represented by their spines and angles.

used to solve Egs. {1)—(3) subject to boundary conditions (5)
and (7). Deforming meshes are required to accommodate the
time evolution of the free surface. Here, we allow the motion
of the nodes along the spines only according to the following
simple rule:

h(t + 81y = chd2). (9)

Here the subscript i refers to the node number, and ¢ = c(e,
) is a constant for all the nodes lying on the same spine.
The classical finite element formulation, which is based on the
Eulerian or fixed mesh, must now be modified to a Lagrangian
form in order to consider the motion of the nodes. From a
physical point of view, motion of nodes will impose some
convective effects on the flow variables. Details of this Lagran-
gian approach is given by Crank {25].

In order to show how this moation affects the convective
terms in Eqs. (2) and (3), consider the axial velocity u at node
j. Denote the time rate of change of this velocity, as appears
in Eq. (2), with 8u/61|,,. Then, for the total change of u in the
moving frame of reference we can write

du
), o

-9
o dr/i\oz /. dr/;

where the subscript j refers to the derivative in the moving
frame of reference. Using Eq. (9) we approximate (dz/df); and
(dr/df); with a backward finite difference in terms of c.
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Now, recognizing that (du/a1),, is the same as du/dr of Eq.
(2), and dropping the subscripts, we can rewrite Eq. (2) in the

moving coordinate as

du c— 1 \ou c—1 \ou
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With a similar argument for the radial momentum equation,

one can show that
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In the calculations, ¢ is approximated as the ratio of A(r)
to At — &t). Our expericnce shows that in general c is
very close to unity and varies very slightly with time.
Therefore, this approximation does not introduce any notice-
able error in the results. Details of the finite element formula-
tion are given in Mashayek and Ashgriz {1] and will not
be repeated here.

(12)

2.2. Free Surfuce Determination

Consider the free surface shown in Fig. 1 (thicker line) on
an axisymmetric r—z plane. The volume underneath the free
surface is divided into smaller subvolumes. These subvolumes
are separated by spines in projected r—z plane and their volumes
are inscribed between cones which all have their vertices at
the origin. Attributed to each subvolume are an angle ¢; and
two spines h; and ., as shown in Fig. 1. The angle 8, is
known from the initial setup of the problem. The objective of
the present technique is to determine A; and A;., for each sub-
volume as a function of time. In orderto find 4; and Ay, , we need
to know the volume of fluid in each subvolume, V;. Consider the
subvolume [ in Fig. 1 which is surrounded by the so-called
inner and outer cones, Knowing V,(f), we are going to find
Vi(t + &) using the velocities # and v in axial and radial
directions, respectively. The new volume of fluid in the sub-
volume is calculated by

Vit + 81) = Vi(1) + 8V, — 8V, (14)
Here, &V, and V.., are the volume fluxes passing through the
inner and outer cone surfaces, respectively. For the flux across
the inner cone we can write

SV = L U, 8tdA, (15)
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FIG. 2. Velocity perpendicular to a spine, U/, is obtained by Ealculating
the compenents of # and v in the direction normal to that spine.

where U/, is the velocity of the fluid perpendicular to the cone
surface, and A is the wetted area on the cone. Let ¢; be the
angle of the inner cone from the z-axis, then

U, = —using; + vcosoy

(16)
and

dA = 2mrdl = 2ml sin o dl, (17)

where [ measures the distance from the origin along the spine
(Fig. 2). In order to evaluate integral (15), we need to have an
expression for the variation of « and v with /. Since the elements
employed to discretize the problem domain are linear, therefore,
a bilinear approximation for velocity on the element side seems
to be quite consistent. Let subscripts m and n refer to the nodal
points lying on the spine (Fig. 1). Therefore,

u=alt+b, v=al+b, (18)
with
a :un_um __Un_vm
u l,,_lm’ ay l,,_lm’
U, U, v, —u
bu= m - mlm: bu:vm_ - mtm-
A -1,

Substituting from (16), (17), and (18) into (15}, we find for the
volume flux along one element side:

3, - b’
7 (G — GG, — Gia)
3 by

GG, +

V, = GGy +
T (G~ GGy~ Gaa) ° °
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FIG. 3. The part of the interface which is located in two neighboring
subvolumes is approximated by a line segment.

SV = 27 sin o, 6t [% (a, cos o, — a, sin a)(3 — )
{ (19)
+ E(b,J cos; — b, sin oW — F,,,)].

Total volume flux along the inner cone, 8V, is obtained by
summing all the elemental fluxes which are given by (19).
Same procedure provides 6V;,,, and substitution into (14) con-
cludes the calculation of volume of fluid inside subvolume i
at time 1 + &t :

To complete the surface determination process, we need to
solve the inverse problem of determining h{t + &), knowing
volumes of fluids in subvolumes. In order to find & along a
certain spine, we consider two neighboring subvolumes which
have that spine in common. Figure 3 shows a schematic of the
desired configuration along with the pertinent notations. It is
assumed that the part of the interface which is located in these
subvolumes can be approximated by a line segment having
the equation |

h= N S— (20)

cos o — asina’

where « is the angle measured from the z-axis and a and b are
two constants yet to be determined. This can be done by writing
the equations for the volumes Vi_, and V; using the known
angles @, 8., and 4,

b3 G
(Gy — GG, — Giay
b ’
G
(Go = Ga)(Gs — Goap O

G,
(2D
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where

G; = §in o), G:_: = COS ;)

Gy = sinfa;y + 8), Gy= cos{ay + 0,-)
Gs = sin(o;—, + 0 + 8,

GT = sin 9,171 y

Gs = cos{a; + 6+ 6)
Gg = sin 6].
are known constants. Equations (21) provide a system of two

equations for two unknowns g and b. To solve for @ and b, we
eliminate »* and obtain a cubic equation for a,

C® + Cat + Ga + C, = 0, (22)

where

C) = —2G3iG.GG, Vi + 2G,G,GEG,V,
C; = (G1G:GsGs + 8G,G,G1G:G3 + GIGG4Go) V-
— (G:G3GEG, + 4G GyGsGeGr + G\ G,GIG)Y,
G, = —2G\G,G1G:sGy + G3G3G:Gy + G,G,GGeG) Ve
+ AG2G1Gs GG, + G\GyGiG; + G\G,GsGsG)V,
Cs = (G3G,GsGe + GIG;GGo) Vi,
—(G\GGiG; + G,G:.GIG) V..

Notice that for a;_, = 0, Eq. (22) is reduced to a quadratic one
(i.e., Cy = 0). Once a is found, & is calculated by substitution
of a into either of equations (21). Then, substitution of a and
b into (20) gives the surface location A(r + &) along the
common spine between the two neighboring subvolumes.

The end subvolumes need special treatments as the end spines
are attached to one subvolume only. For these subvelumes one
may use the symmetry of the shape and find the height along
the axis. For instance, along the z-axis, where @ = 0, the
focation of the free surface is given by

3V1 ir3
= (——2 ) .
7 tan’f,

where subscript | refers to first subvolume which is attached
to the z-axis. If the spine at e¢ = 7/2 is a symmetry axis then

(23)

3VN 13
By = | =2
= (522"

with N being the total number of subvelumes,

In order to examine the accuracy of the technique, we have
reconstructed the surface of an axisymmetric drop whose sur-
face location is known a priori. We chose a spherical drop

(24
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FIG. 4. Accuracy of the technique is tested by reconstructing a known
surface using different number of subvolumes. %Error is defined in the text.
(a) Variations of the %error versus angular coordinate o for different number
of subvolumes N. (b) Variation of root mean square (rms) of %error versus
the angular increment e, on a log—log plot.

which is disturbed by a Legendre function of order four as
shown in Fig. 5a below. This particular function is chosen
because it includes both concave and convex curves with large
curvatures. The surface was reconstructed using different num-
bers of subvolumes, N = 10, 20, 30, 40, and 30. For each case
the percent relative error was calculated which is defined as

hcalculalcd - haclual

%Error = X 100,

haclu:l.l

Figure 4a shows that the surface reconstructed with 10 sub-
volumes experiences relative errors as large as —3.5%. As
expected, concave parts of the surface are reconstructed with
negative errors and convex parts with positive errors. In addi-
tion, parts of the surface with smaller curvature show less errors



372

(a)

484
.380

(b)

r/”///)»

MASHAYEK AND ASHGRIZ

{d)

489

383

(£)

FIG. 5. Tlustration of the steps taken in the technique: (a) definition of the initial surface shape, (b) subdivision of the domain into subvolumes and
description of the subvolume quantity, (c) mesh generation, {(d} calculation of the velocity ficld, (¢) advection of the liquid and calculation of the new subvolume

quantities, and {f) reconstruction of the new surface and finite element mesh.

than parts with higher curvature. As the number of subvolumes
is increased the accuracy of the surface reconstruction is im-
proved substantially such that with ¥ = 20 the maximum
relative error drops below 0.9%. Acceptable accuracies are
abtained with &N = 30 and 40 and very good agreement is
achieved when 80 subvolumes are used. In order to obtain a
more quantitative assessment of the accuracy of this technique,
in Fig. 4b we have shown the variation of root mean square
(rms) of %error versus the angular increment éx (= 7/2N}), on
a log-log plot. It is clearly seen that the variation is linear

with a slope of 1.98. Therefore, the rms of the %error varies
proportional to (Sa)'*® which indicates that SFM is second
order accurate in surface reconstruction.

The sequence of operations involved in SFM is summarized
in Fig. 5. The initial configuration is shown in Fig. 5a. The
volume is divided inte 10 subvolumes and fluid volume in each
of these subvolumes is calculated by integrating the initial
surface function. The amount of fluid ioside each subvolume
is shown in Fig. 5b. Then, the surface reconstruction technique
is invoked and the finite element mesh corresponding to the
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reconstructed surface is generated by subdividing the height
along cach spine into predefined ratios (Fig. 5¢). Next, the
velocity field is updated by the finite element method. The
velocity vectors are shown in Fig. 5d and are used to calculate
the new fluid volume in each subvolume (Fig. 5e). It should
be mentioned that in order to obtain larger surface motions we
have considered an initial horizontal velocity in the negative z
direction. The new surface has been reconstructed and shown
in Fig. 5f along with the corresponding finite element mesh.
This concludes the first time step in the simulation and in the
continuation, stages shown in Figs. 5d-3f are repeated for each
time step.

3. DROP OSCILLATION

The purpose of this section is two-fold. On one hand, we
wish to provide sufficient evidence to reveal the accuracy and
efficiency of the technique by comparing the results of our
simulations to those of other investigators. On the other hand,
a brief case study of oscillations of a liquid drop subject to
different initial surface perturbations and various Re numbers
are provided, The accuracy of the technique is also examined
by comparing the results obtained on successively refined finite
element meshes.

For the drop oscillation problem, the characteristic length is
the radius of unpertarbed spherical drop. Drops are released
with a zero velocity field (# = v = Q); therefore, to obtain the
characteristic velocity, we set We = 1, Consequently, the Re
number is calculated using the characteristic length and veloc-
ity. Two types of initial surface perturbations are considered
here. One is an ellipsoid shape,

ab
(@sin a) + (b cos a)*]\2

at =0, (25

ro(a) = [

where @ and b are the nondimensional diameters of ellipsoid
in z and r directions, respectively. The angle « is measured
from z-axis in the r—z plane of the cylindrical coordinates.
Considering volume conservation, 4 and b are related by
db? = 1; therefore, @ = s and b = s~ where s = 4/b. The
second perturbation is proportional to the second spherical har-
monic:

rola) = Ry|1 + goPy(cos )]  at

t=0 (26)

Here g, is the amplitude of the initial disturbance and

35 1/3
Ry = (__'_2—_5
35+ 2180 + 280

is used to keep the volume of the drop constant when g, is
varied. Po(cos v) is the Legendre polynomial.
As a first check on the accuracy of the technique, we simu-
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TABLE 1
The Effect of Mesh Refinement on the Accuracy of the Results
Mesh T a b s
22 X7 2.4180 1.44259 0.81234 1.77583
26 X7 2.4225 144771 0.81368 1.77922
X9 24270 1.45048 0.81465 1.78050

lated the small amplitade oscillations of drop with Re = 100.
The period of the oscillation can be compared with the analytical
results of Prosperetti [26] who studied the small amplitude
oscillations of viscous drops as an initial value problem. Period
of oscillation obtained from our simulation for a drop initially
perturbed with the second spherical harmonic at g, = (.01 is
2.2232, This value compares very well with 2.2218 which is
predicted by Prosperetti’s theory.

Next, we consider an ellipsoid perturbation with s = 2 and
Re = 100. This Re number (along with We = 1) corresponds
to a spherical water drop with radius of 150 wm. The properties
used for water are p = 10° kg/m®, » = 107¢ m¥/s, and o =
0.067 N/m. In order to analyze the accuracy, simulations of
the first period were performed on three different meshes. Table
I shows the results of simulations for 22 X 7, 26 X 7, and
30 X 9 element meshes (smaller number is the number of
elements in radial direction) using a time step & = 0.0015.
The period of first oscillation, 7, was calculated as the interval
between the two maxima observed in time variations of s.
Results show that the difference between 7, obtained by a 22
X 7 mesh and that of the 30 X 9 mesh is less than 0.37%,
while the total number of unknowns has been decreased by
69%. It is important to notice the very small sensitivity of the
results to the decrease of number of elements in peripheral
direction, since this also affects the accuracy of the surface
reconstruction technique due to the decrease of number of
subvolumes. Values obtained for 4, B, and s at the end of the
first period are also in very good agreement for different meshes.

More simulations were carried out for the same drop (s =
2) at lower Re (Re = 1, 3, 10, and 30) and for longer times
to see the damping etfects of the viscosity. In Fig. 6, we have
shown variations of s with time for different Re. It is clearly
seen that as the Re is decreased oscillations of the drop damps
out faster. At Re = 1, no oscillation is observed and the nature
of oscillation is changed from underdamped to overdamped.
This is in agreement with the results of Basaran [27] who
reported a critical value for Reynolds number between 1.3 and
1.4 at which this change of nature of oscillations occurs. Similar
phenomenon was observed by Ashgriz and Mashayek [28] in
the study of oscillations of capillary jets in the stable region.
Variations of period of oscillation of the drop versus number
of periods is shown in Fig. 7 for Re = 10 and 30. In general,
period of oscillation decreases with number of periods; how-
ever, the rate of decrease is higher at larger Re number.
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FIG. 6. Oscillations of drops with initial s = 2 at different Re numbers. For a drop with Re = [, no oscillation is observed.

Two large amplitude drop oscillations have also been per-
formed in order to compare the results with those obtained by
other investigators. For comparison, we chose one drop with
ellipsoid initial deformation with s = 3, and one drop with the
second spherical harmonic perturbed with g, = 0.9. For these

=]
©
@
o
22 r R
;
o1 b +——= Re=30 i
o —+ Re=10
20 L ] ] 1 1

1 2 3 4 5 6 7
Number of Periods

FIG. 7, Period of oscillations as a function of number of periods for drops
with initial s = 2 and Re = 10 and 30.

cases, Re was 100. Time evolutions of the shapes of these
drops during the first period are shown in Figs. 8 and 9, respec-
tively. These cases have already been simulated by Basaran
[27] (his Figs. 6 and 3, respectively) using a very accurate finite
element method. To perform these simulations, he implemented
a 16 X 8 quadrilateral finite element mesh (his Mesh III) with
a total of unknowns equal to 1308. In our simulations, we
employed a 30 X 9 bilinear element mesh which results in a
total of 620 unknowns, which is less than half of that of Basar-
an’s Mesh III. We compared the shape evolutions obtained by
the two simulations and observed very good agreements up to
the thickness of the lines.

In general, oscillation of a drop is govemed by competition
among kinetic energy, surface energy, and viscous dissipation.
At high Re numbers, viscous dissipation is less important and
behavior of the drop can be explained by analyzing kinetic and
surface energies. As an example for this, consider oscillation
of the drop shown in Fig. 8 in time interval 1.0 < r < 1.2
Figure 8 shows that during this interval the surface of the
drop experiences more radial displacement than axial. However,
mass conservation considerations require the inverse to happen,
since larger volume change is attainable with smaller surface
displacement at larger radius. Therefore, it is inferred that the
velocity of fluid around the z-axis must have been decreased
in this interval. In order to clarify this point, we have plotted
the velocity vectors at ¢ = 1.0, 1.1, and 1.2 in Fig. 10. On the
left, the evolution of the finite element mesh with time is shown.
Vectors used for presenting velocities have same scale for ¢ =
1.0 and 1.1; however, the scale changes for + = 1.2. In Fig.
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FIG, 8. Time-resolved shape evolutions of an ellipsoid drop with initial s = 3 released with zero velocity. Numbers on the figure show the time.

104a, it is seen that a flat region is formed on the drop surface
around the z-axis. This results in the decrease of surface curva-
ture and consequently surface energy in this region which neces-
sitates redistribution of the surface energy. Sequences of surface
energy redistribution are clearly seen in Figs, 10a—10c. The
velocity of the fluid is reduced around the z-axis while other
parts of the surface move faster. As a result of this, a region
with high curvature is formed which is now capable of pushing
the fluid toward the center of the drop.

4. USING COORDINATE SHIFT TO SIMULATE LARGE
SURFACE DEFORMATIONS

A shortcoming associated with SFM {or spine methods in
general) arises when problems with nonsymmetric surface evo-

2.0

lutions, with respect to r-axis, are encountered. A typical case
is the oscillation of a drop whose surface is initially perturbed
with an odd spherical harmonic. Another case is the collision
of two non-equal size liquid drops. In these problems, the
nonsymmetric evolution of the surface may result in a surface
shape that becomes very close to the origin of the coordinate
frame from one side. In more severe cases the surface may
even pass the origin which results in a situation that there is
no uneqnivocal radial direction. Obviously, when this happens,
calculations become considerably less accurate, if it is not im-
possible, unless a measure is adopted io shift the coordinate
from its original position. One way ta accomplish this task is
to consider an artificial motion of the liquid domain relative to
the coordinate which is guaranteed not to affect the solution due

Ll
Q.0
b

FIG. 9. Time-resolved shape evolutions for a drop released from the second spherical harmonic with g, = 0.9. Numbers on the figure show the time.
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FIG. 10. Velocity vector plots and finite element meshes for the drop
shown in Fig. 7 at times £ = 1.0, 1.1, and 1.2. x is the vector scale for velocity
with respect to the velocities at ¢ = L.0.

to the invariance of Navier—Stokes equations under a Galilean
transformation. Therefore, initially a constant axial velocity is
added to the liguid velocity field which results in a relative
motion of the liquid domain with respect to the coordinate. The
magnitude of this velocity is chosen such that it resuits in a
proper coordinate shift during the expected time interval. Once
the coordinate is reached to its desired position the constant
velocity is subtracted from the velocity field.

In order to clarify this procedure consider the problem of
collision of two nonequal size liquid drops. We can only con-
sider the head-on collision of two drops which allows an axi-

MASHAYEK AND ASHGRIZ

symmetric simplification. We are also limited to surface defor-
mations which do not result in the so-called double definition
of the surface along a spine (i.e., a spine can not intersect the
surface at more than one point, otherwise the simulation fails).
Figure 11a shows a schematic of the initial setup of the problem.
The initial location of the coordinate has to be close to the
contact plane of two drops in order to have a suitable distribution
of subvolumes and to prevent the double-definition. However,
this location of the coordinate is far from the center of mass.
Considering thar at long times the coalesced drop is going to
oscillate about the center of mass, the initial position of the
coordinate will not be a proper choice for long time oscillations
of the liquid drop (Fig. 11b). To remedy this mismatch of the

. coordinate frame and the liquid motion, one may decide to stop

the simulation at the situation shown in Fig, 2b and restart the
calculations with the coordinate position shown in Fig. 2c.
However, this would require recalculation of the subvolumes

{a) o

()

FIG. 11. The coordinate shift procedure is explained by using schematics
of a drop collision problem. (a) In the initial setup of the problem the coordinate
is located on the contact surface of drops which does not coincide with the
center of mass (CM) of the system. (b} After coalescence the liquid drop
oscillates about the center of mass which results in improper discretization of
the liquid domain into subvolumes, To achigve the proper discretization, either
(c) the coordinate origin is shifted to the center of mass or (d) the center of
mass is shifted to the origin of the coordinate systemn.
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Fi1G. 12, Time evoluiions of the surface of two coalesced drops with We = 1 and Re = 50. The relative impact velocity is 2 and the drop size ratio is

0.5. The numbers on the figure show the time.

based on the new location of the drop, and generation of a new
finite element mesh. It is also required that the velocities are
interpolated to the new node positions. This procedure is tedicus
and resuits in the loss of accuracy. An alternative to this lengthy
procedure is to move the liquid domain with respect lo the
coordinate with a constant velocity, starting at time ¢ = 0. Once
the center of mass of the liquid coincides with the origin of
the coordinate, further relative motion is eliminated by sub-
tracting the constant vefocity from the velocity field. The result
is seen in Fig. 11d.

A typical case of non-equal size drop collision for We = 1
and Re = 50 is shown in Fig. 12. The nondimensional relative
impact velocity is 2 and the ratio of the radii of the two drops
is 0.5. The length scale for this probiem is the radius of the
larger drop. An initial contact between the drops has to be
considered in order to implement SFM to this problem which
is shown in Fig. 12 at t = 0. Notice that the velocity of the

center of mass changes with time. Therefore, the coordinate
frame which is initially coincided with the center of mass will
have a different location than the instantaneous center of mass.
However, the deviation is small compared to the drop radius
and a coordinate frame moving with the initial velocity of the
center of mass is suitable for long time simulations. All the
results are shown on a coordinate frame which is moving with
the initial velocity of the center of mass. The body force pro-
duced by acceleration of the center of mass has been included
in this problem as explained in Section 2. In order to accomplish
the coordinate shift from the initial contact plane to the center
of mass, a constant negative axial velocity of magnitude unity
is added to the initial velocities of the drops which are calculated
from the relative impact velocity in a coordinate moving with
initial velocity of the center of mass. Approximately, at time
t = 0.81 the center of mass coincides with the coordinate origin
and the constant velocity is subtracted from the velocity field.
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In Fig. 13, we have plotted the position of the rwo surface
points which are located on the z-axis. The variation of the
distance between these points with time is also shown on the
figure. Notice that no discontinuity in these curves is observed
at + = 0.81 which indicates the smooth transition. The curves
of Fig. 13 show that the two end points of the coleasced drop
oscillate with almost same period, but with a phase shift. The
amplitude of the oscillation is decreased with time due to the
presence of viscosity and as it is seen in Fig. 12, at longer
times the drop approaches to a spherical shape.

5. CONCLUSION

A spine-flux-method (SFM) has been developed for simulat-
ing the free surface flow. This method, which is based on
describing the free surface by a spine function h, discretizes
the liquid zone into conical subvolumes. The volume of each
of the subvolumes is updated using the local velocities at the
interface of every two neighboring subvolumes. Then, the new
spines are calculated using the updated subvolumes. A Galerkin
finite element method with penalty formuiation is implemented
for solving the momentum equations.

In general, three different aspects are distinguishable in a
free surface flow code: (1) Velocity field calculation, (2) surface
reconstruction, and (3} curvature calculations. Although, these
aspects are highly coupled, improvement of any of the three,
in a consistent manner, may result in the enhancement of the
periormance of the code. In comparison to the “*traditional’’
finite difference based VOF methods, the technique presented
in this paper provides higher order of accuracy in all of the
above mentioned patts. The velocity calculations at the interface
are more accurate since the finite element method eliminates
the need for interpolation or extrapolation schemes. Surface
reconstruction also provides higher accuracy, as discussed in
section 2.2, The major source of the error in the calculation of
the curvature in VOF techniques is the difficuity in describing
a constant base for the height calculations. This defficiency has
been overcome in the spine-flux method by using a constant
base (i.e., the origin of the coordinate system) for the determina-
tion of the height at various locations on the free surface.
Therefore, since the performance of the code has been consis-
tently upgraded in every aspects, the overall accuracy in-
creases accordingly.

In addition, the spine-flux method presented here has the
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advantage over the conventional spine methods in that the
number of equations to find the location of the free surface is
decreased by one, therefore, resulting in a more computationally
efficient method. Also it utilizes the entire velocity field instead
of the surface velocity to advect the interface; therefore, it
results in a more accurate surface advection. It is also shown
that in problems with a moving center of mass a coordinate
shift can be adopted that allows the simulation of large surface
deformations. The performance of the technique is examined by
simulating several drop oscillation and drop collision problems.
Comparisons made with the available analytical and numerical
results indicate that a high degree of accuracy is achieved by
using relatively coarse meshes.
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